\(\int \sqrt {f+g x} \sqrt {a+c x^2} \, dx\) [625]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 362 \[ \int \sqrt {f+g x} \sqrt {a+c x^2} \, dx=-\frac {4 f \sqrt {f+g x} \sqrt {a+c x^2}}{15 g}+\frac {2 (f+g x)^{3/2} \sqrt {a+c x^2}}{5 g}+\frac {4 \sqrt {-a} \left (c f^2-3 a g^2\right ) \sqrt {f+g x} \sqrt {1+\frac {c x^2}{a}} E\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a g}{\sqrt {-a} \sqrt {c} f-a g}\right )}{15 \sqrt {c} g^2 \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {c} f+\sqrt {-a} g}} \sqrt {a+c x^2}}-\frac {4 \sqrt {-a} f \left (c f^2+a g^2\right ) \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {c} f+\sqrt {-a} g}} \sqrt {1+\frac {c x^2}{a}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right ),-\frac {2 a g}{\sqrt {-a} \sqrt {c} f-a g}\right )}{15 \sqrt {c} g^2 \sqrt {f+g x} \sqrt {a+c x^2}} \]

[Out]

2/5*(g*x+f)^(3/2)*(c*x^2+a)^(1/2)/g-4/15*f*(g*x+f)^(1/2)*(c*x^2+a)^(1/2)/g+4/15*(-3*a*g^2+c*f^2)*EllipticE(1/2
*(1-x*c^(1/2)/(-a)^(1/2))^(1/2)*2^(1/2),(-2*a*g/(-a*g+f*(-a)^(1/2)*c^(1/2)))^(1/2))*(-a)^(1/2)*(g*x+f)^(1/2)*(
1+c*x^2/a)^(1/2)/g^2/c^(1/2)/(c*x^2+a)^(1/2)/((g*x+f)*c^(1/2)/(g*(-a)^(1/2)+f*c^(1/2)))^(1/2)-4/15*f*(a*g^2+c*
f^2)*EllipticF(1/2*(1-x*c^(1/2)/(-a)^(1/2))^(1/2)*2^(1/2),(-2*a*g/(-a*g+f*(-a)^(1/2)*c^(1/2)))^(1/2))*(-a)^(1/
2)*(1+c*x^2/a)^(1/2)*((g*x+f)*c^(1/2)/(g*(-a)^(1/2)+f*c^(1/2)))^(1/2)/g^2/c^(1/2)/(g*x+f)^(1/2)/(c*x^2+a)^(1/2
)

Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 362, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {749, 847, 858, 733, 435, 430} \[ \int \sqrt {f+g x} \sqrt {a+c x^2} \, dx=-\frac {4 \sqrt {-a} f \sqrt {\frac {c x^2}{a}+1} \left (a g^2+c f^2\right ) \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {-a} g+\sqrt {c} f}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right ),-\frac {2 a g}{\sqrt {-a} \sqrt {c} f-a g}\right )}{15 \sqrt {c} g^2 \sqrt {a+c x^2} \sqrt {f+g x}}+\frac {4 \sqrt {-a} \sqrt {\frac {c x^2}{a}+1} \sqrt {f+g x} \left (c f^2-3 a g^2\right ) E\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a g}{\sqrt {-a} \sqrt {c} f-a g}\right )}{15 \sqrt {c} g^2 \sqrt {a+c x^2} \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {-a} g+\sqrt {c} f}}}+\frac {2 \sqrt {a+c x^2} (f+g x)^{3/2}}{5 g}-\frac {4 f \sqrt {a+c x^2} \sqrt {f+g x}}{15 g} \]

[In]

Int[Sqrt[f + g*x]*Sqrt[a + c*x^2],x]

[Out]

(-4*f*Sqrt[f + g*x]*Sqrt[a + c*x^2])/(15*g) + (2*(f + g*x)^(3/2)*Sqrt[a + c*x^2])/(5*g) + (4*Sqrt[-a]*(c*f^2 -
 3*a*g^2)*Sqrt[f + g*x]*Sqrt[1 + (c*x^2)/a]*EllipticE[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*g)
/(Sqrt[-a]*Sqrt[c]*f - a*g)])/(15*Sqrt[c]*g^2*Sqrt[(Sqrt[c]*(f + g*x))/(Sqrt[c]*f + Sqrt[-a]*g)]*Sqrt[a + c*x^
2]) - (4*Sqrt[-a]*f*(c*f^2 + a*g^2)*Sqrt[(Sqrt[c]*(f + g*x))/(Sqrt[c]*f + Sqrt[-a]*g)]*Sqrt[1 + (c*x^2)/a]*Ell
ipticF[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*g)/(Sqrt[-a]*Sqrt[c]*f - a*g)])/(15*Sqrt[c]*g^2*S
qrt[f + g*x]*Sqrt[a + c*x^2])

Rule 430

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]
))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && Gt
Q[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 733

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2*a*Rt[-c/a, 2]*(d + e*x)^m*(Sqrt[1
+ c*(x^2/a)]/(c*Sqrt[a + c*x^2]*(c*((d + e*x)/(c*d - a*e*Rt[-c/a, 2])))^m)), Subst[Int[(1 + 2*a*e*Rt[-c/a, 2]*
(x^2/(c*d - a*e*Rt[-c/a, 2])))^m/Sqrt[1 - x^2], x], x, Sqrt[(1 - Rt[-c/a, 2]*x)/2]], x] /; FreeQ[{a, c, d, e},
 x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m^2, 1/4]

Rule 749

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((a + c*x^2)^p/(e
*(m + 2*p + 1))), x] + Dist[2*(p/(e*(m + 2*p + 1))), Int[(d + e*x)^m*Simp[a*e - c*d*x, x]*(a + c*x^2)^(p - 1),
 x], x] /; FreeQ[{a, c, d, e, m}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] && NeQ[m + 2*p + 1, 0] && ( !Ration
alQ[m] || LtQ[m, 1]) &&  !ILtQ[m + 2*p, 0] && IntQuadraticQ[a, 0, c, d, e, m, p, x]

Rule 847

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[g*(d + e*x)^
m*((a + c*x^2)^(p + 1)/(c*(m + 2*p + 2))), x] + Dist[1/(c*(m + 2*p + 2)), Int[(d + e*x)^(m - 1)*(a + c*x^2)^p*
Simp[c*d*f*(m + 2*p + 2) - a*e*g*m + c*(e*f*(m + 2*p + 2) + d*g*m)*x, x], x], x] /; FreeQ[{a, c, d, e, f, g, p
}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[m, 0] && NeQ[m + 2*p + 2, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ
[2*m, 2*p]) &&  !(IGtQ[m, 0] && EqQ[f, 0])

Rule 858

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {2 (f+g x)^{3/2} \sqrt {a+c x^2}}{5 g}+\frac {2 \int \frac {(a g-c f x) \sqrt {f+g x}}{\sqrt {a+c x^2}} \, dx}{5 g} \\ & = -\frac {4 f \sqrt {f+g x} \sqrt {a+c x^2}}{15 g}+\frac {2 (f+g x)^{3/2} \sqrt {a+c x^2}}{5 g}+\frac {4 \int \frac {2 a c f g-\frac {1}{2} c \left (c f^2-3 a g^2\right ) x}{\sqrt {f+g x} \sqrt {a+c x^2}} \, dx}{15 c g} \\ & = -\frac {4 f \sqrt {f+g x} \sqrt {a+c x^2}}{15 g}+\frac {2 (f+g x)^{3/2} \sqrt {a+c x^2}}{5 g}+\frac {1}{15} \left (2 \left (3 a-\frac {c f^2}{g^2}\right )\right ) \int \frac {\sqrt {f+g x}}{\sqrt {a+c x^2}} \, dx+\frac {1}{15} \left (2 f \left (a+\frac {c f^2}{g^2}\right )\right ) \int \frac {1}{\sqrt {f+g x} \sqrt {a+c x^2}} \, dx \\ & = -\frac {4 f \sqrt {f+g x} \sqrt {a+c x^2}}{15 g}+\frac {2 (f+g x)^{3/2} \sqrt {a+c x^2}}{5 g}+\frac {\left (4 a \left (3 a-\frac {c f^2}{g^2}\right ) \sqrt {f+g x} \sqrt {1+\frac {c x^2}{a}}\right ) \text {Subst}\left (\int \frac {\sqrt {1+\frac {2 a \sqrt {c} g x^2}{\sqrt {-a} \left (c f-\frac {a \sqrt {c} g}{\sqrt {-a}}\right )}}}{\sqrt {1-x^2}} \, dx,x,\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )}{15 \sqrt {-a} \sqrt {c} \sqrt {\frac {c (f+g x)}{c f-\frac {a \sqrt {c} g}{\sqrt {-a}}}} \sqrt {a+c x^2}}+\frac {\left (4 a f \left (a+\frac {c f^2}{g^2}\right ) \sqrt {\frac {c (f+g x)}{c f-\frac {a \sqrt {c} g}{\sqrt {-a}}}} \sqrt {1+\frac {c x^2}{a}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {1+\frac {2 a \sqrt {c} g x^2}{\sqrt {-a} \left (c f-\frac {a \sqrt {c} g}{\sqrt {-a}}\right )}}} \, dx,x,\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )}{15 \sqrt {-a} \sqrt {c} \sqrt {f+g x} \sqrt {a+c x^2}} \\ & = -\frac {4 f \sqrt {f+g x} \sqrt {a+c x^2}}{15 g}+\frac {2 (f+g x)^{3/2} \sqrt {a+c x^2}}{5 g}-\frac {4 \sqrt {-a} \left (3 a-\frac {c f^2}{g^2}\right ) \sqrt {f+g x} \sqrt {1+\frac {c x^2}{a}} E\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a g}{\sqrt {-a} \sqrt {c} f-a g}\right )}{15 \sqrt {c} \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {c} f+\sqrt {-a} g}} \sqrt {a+c x^2}}-\frac {4 \sqrt {-a} f \left (a+\frac {c f^2}{g^2}\right ) \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {c} f+\sqrt {-a} g}} \sqrt {1+\frac {c x^2}{a}} F\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a g}{\sqrt {-a} \sqrt {c} f-a g}\right )}{15 \sqrt {c} \sqrt {f+g x} \sqrt {a+c x^2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 23.16 (sec) , antiderivative size = 521, normalized size of antiderivative = 1.44 \[ \int \sqrt {f+g x} \sqrt {a+c x^2} \, dx=\frac {\sqrt {f+g x} \left (\frac {2 (f+3 g x) \left (a+c x^2\right )}{g}-\frac {4 \left (g^2 \sqrt {-f-\frac {i \sqrt {a} g}{\sqrt {c}}} \left (c f^2-3 a g^2\right ) \left (a+c x^2\right )+\sqrt {c} \left (-i c^{3/2} f^3+\sqrt {a} c f^2 g+3 i a \sqrt {c} f g^2-3 a^{3/2} g^3\right ) \sqrt {\frac {g \left (\frac {i \sqrt {a}}{\sqrt {c}}+x\right )}{f+g x}} \sqrt {-\frac {\frac {i \sqrt {a} g}{\sqrt {c}}-g x}{f+g x}} (f+g x)^{3/2} E\left (i \text {arcsinh}\left (\frac {\sqrt {-f-\frac {i \sqrt {a} g}{\sqrt {c}}}}{\sqrt {f+g x}}\right )|\frac {\sqrt {c} f-i \sqrt {a} g}{\sqrt {c} f+i \sqrt {a} g}\right )-\sqrt {a} \sqrt {c} g \left (c f^2+4 i \sqrt {a} \sqrt {c} f g-3 a g^2\right ) \sqrt {\frac {g \left (\frac {i \sqrt {a}}{\sqrt {c}}+x\right )}{f+g x}} \sqrt {-\frac {\frac {i \sqrt {a} g}{\sqrt {c}}-g x}{f+g x}} (f+g x)^{3/2} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\frac {\sqrt {-f-\frac {i \sqrt {a} g}{\sqrt {c}}}}{\sqrt {f+g x}}\right ),\frac {\sqrt {c} f-i \sqrt {a} g}{\sqrt {c} f+i \sqrt {a} g}\right )\right )}{c g^3 \sqrt {-f-\frac {i \sqrt {a} g}{\sqrt {c}}} (f+g x)}\right )}{15 \sqrt {a+c x^2}} \]

[In]

Integrate[Sqrt[f + g*x]*Sqrt[a + c*x^2],x]

[Out]

(Sqrt[f + g*x]*((2*(f + 3*g*x)*(a + c*x^2))/g - (4*(g^2*Sqrt[-f - (I*Sqrt[a]*g)/Sqrt[c]]*(c*f^2 - 3*a*g^2)*(a
+ c*x^2) + Sqrt[c]*((-I)*c^(3/2)*f^3 + Sqrt[a]*c*f^2*g + (3*I)*a*Sqrt[c]*f*g^2 - 3*a^(3/2)*g^3)*Sqrt[(g*((I*Sq
rt[a])/Sqrt[c] + x))/(f + g*x)]*Sqrt[-(((I*Sqrt[a]*g)/Sqrt[c] - g*x)/(f + g*x))]*(f + g*x)^(3/2)*EllipticE[I*A
rcSinh[Sqrt[-f - (I*Sqrt[a]*g)/Sqrt[c]]/Sqrt[f + g*x]], (Sqrt[c]*f - I*Sqrt[a]*g)/(Sqrt[c]*f + I*Sqrt[a]*g)] -
 Sqrt[a]*Sqrt[c]*g*(c*f^2 + (4*I)*Sqrt[a]*Sqrt[c]*f*g - 3*a*g^2)*Sqrt[(g*((I*Sqrt[a])/Sqrt[c] + x))/(f + g*x)]
*Sqrt[-(((I*Sqrt[a]*g)/Sqrt[c] - g*x)/(f + g*x))]*(f + g*x)^(3/2)*EllipticF[I*ArcSinh[Sqrt[-f - (I*Sqrt[a]*g)/
Sqrt[c]]/Sqrt[f + g*x]], (Sqrt[c]*f - I*Sqrt[a]*g)/(Sqrt[c]*f + I*Sqrt[a]*g)]))/(c*g^3*Sqrt[-f - (I*Sqrt[a]*g)
/Sqrt[c]]*(f + g*x))))/(15*Sqrt[a + c*x^2])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(601\) vs. \(2(290)=580\).

Time = 0.93 (sec) , antiderivative size = 602, normalized size of antiderivative = 1.66

method result size
risch \(\frac {2 \left (3 g x +f \right ) \sqrt {g x +f}\, \sqrt {c \,x^{2}+a}}{15 g}+\frac {2 \left (\frac {8 a f g \left (\frac {f}{g}-\frac {\sqrt {-a c}}{c}\right ) \sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x -\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x +\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}}\, F\left (\sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\right )}{\sqrt {c g \,x^{3}+c f \,x^{2}+a g x +f a}}+\frac {2 \left (3 a \,g^{2}-c \,f^{2}\right ) \left (\frac {f}{g}-\frac {\sqrt {-a c}}{c}\right ) \sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x -\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x +\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}}\, \left (\left (-\frac {f}{g}-\frac {\sqrt {-a c}}{c}\right ) E\left (\sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\right )+\frac {\sqrt {-a c}\, F\left (\sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\right )}{c}\right )}{\sqrt {c g \,x^{3}+c f \,x^{2}+a g x +f a}}\right ) \sqrt {\left (g x +f \right ) \left (c \,x^{2}+a \right )}}{15 g \sqrt {g x +f}\, \sqrt {c \,x^{2}+a}}\) \(602\)
elliptic \(\frac {\sqrt {\left (g x +f \right ) \left (c \,x^{2}+a \right )}\, \left (\frac {2 x \sqrt {c g \,x^{3}+c f \,x^{2}+a g x +f a}}{5}+\frac {2 f \sqrt {c g \,x^{3}+c f \,x^{2}+a g x +f a}}{15 g}+\frac {16 f a \left (\frac {f}{g}-\frac {\sqrt {-a c}}{c}\right ) \sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x -\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x +\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}}\, F\left (\sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\right )}{15 \sqrt {c g \,x^{3}+c f \,x^{2}+a g x +f a}}+\frac {2 \left (\frac {2 a g}{5}-\frac {2 f^{2} c}{15 g}\right ) \left (\frac {f}{g}-\frac {\sqrt {-a c}}{c}\right ) \sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x -\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x +\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}}\, \left (\left (-\frac {f}{g}-\frac {\sqrt {-a c}}{c}\right ) E\left (\sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\right )+\frac {\sqrt {-a c}\, F\left (\sqrt {\frac {x +\frac {f}{g}}{\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {f}{g}+\frac {\sqrt {-a c}}{c}}{-\frac {f}{g}-\frac {\sqrt {-a c}}{c}}}\right )}{c}\right )}{\sqrt {c g \,x^{3}+c f \,x^{2}+a g x +f a}}\right )}{\sqrt {g x +f}\, \sqrt {c \,x^{2}+a}}\) \(623\)
default \(\text {Expression too large to display}\) \(1162\)

[In]

int((g*x+f)^(1/2)*(c*x^2+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/15*(3*g*x+f)*(g*x+f)^(1/2)*(c*x^2+a)^(1/2)/g+2/15/g*(8*a*f*g*(f/g-(-a*c)^(1/2)/c)*((x+f/g)/(f/g-(-a*c)^(1/2)
/c))^(1/2)*((x-(-a*c)^(1/2)/c)/(-f/g-(-a*c)^(1/2)/c))^(1/2)*((x+(-a*c)^(1/2)/c)/(-f/g+(-a*c)^(1/2)/c))^(1/2)/(
c*g*x^3+c*f*x^2+a*g*x+a*f)^(1/2)*EllipticF(((x+f/g)/(f/g-(-a*c)^(1/2)/c))^(1/2),((-f/g+(-a*c)^(1/2)/c)/(-f/g-(
-a*c)^(1/2)/c))^(1/2))+2*(3*a*g^2-c*f^2)*(f/g-(-a*c)^(1/2)/c)*((x+f/g)/(f/g-(-a*c)^(1/2)/c))^(1/2)*((x-(-a*c)^
(1/2)/c)/(-f/g-(-a*c)^(1/2)/c))^(1/2)*((x+(-a*c)^(1/2)/c)/(-f/g+(-a*c)^(1/2)/c))^(1/2)/(c*g*x^3+c*f*x^2+a*g*x+
a*f)^(1/2)*((-f/g-(-a*c)^(1/2)/c)*EllipticE(((x+f/g)/(f/g-(-a*c)^(1/2)/c))^(1/2),((-f/g+(-a*c)^(1/2)/c)/(-f/g-
(-a*c)^(1/2)/c))^(1/2))+(-a*c)^(1/2)/c*EllipticF(((x+f/g)/(f/g-(-a*c)^(1/2)/c))^(1/2),((-f/g+(-a*c)^(1/2)/c)/(
-f/g-(-a*c)^(1/2)/c))^(1/2))))*((g*x+f)*(c*x^2+a))^(1/2)/(g*x+f)^(1/2)/(c*x^2+a)^(1/2)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 229, normalized size of antiderivative = 0.63 \[ \int \sqrt {f+g x} \sqrt {a+c x^2} \, dx=\frac {2 \, {\left (2 \, {\left (c f^{3} + 9 \, a f g^{2}\right )} \sqrt {c g} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c f^{2} - 3 \, a g^{2}\right )}}{3 \, c g^{2}}, -\frac {8 \, {\left (c f^{3} + 9 \, a f g^{2}\right )}}{27 \, c g^{3}}, \frac {3 \, g x + f}{3 \, g}\right ) + 6 \, {\left (c f^{2} g - 3 \, a g^{3}\right )} \sqrt {c g} {\rm weierstrassZeta}\left (\frac {4 \, {\left (c f^{2} - 3 \, a g^{2}\right )}}{3 \, c g^{2}}, -\frac {8 \, {\left (c f^{3} + 9 \, a f g^{2}\right )}}{27 \, c g^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c f^{2} - 3 \, a g^{2}\right )}}{3 \, c g^{2}}, -\frac {8 \, {\left (c f^{3} + 9 \, a f g^{2}\right )}}{27 \, c g^{3}}, \frac {3 \, g x + f}{3 \, g}\right )\right ) + 3 \, {\left (3 \, c g^{3} x + c f g^{2}\right )} \sqrt {c x^{2} + a} \sqrt {g x + f}\right )}}{45 \, c g^{3}} \]

[In]

integrate((g*x+f)^(1/2)*(c*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

2/45*(2*(c*f^3 + 9*a*f*g^2)*sqrt(c*g)*weierstrassPInverse(4/3*(c*f^2 - 3*a*g^2)/(c*g^2), -8/27*(c*f^3 + 9*a*f*
g^2)/(c*g^3), 1/3*(3*g*x + f)/g) + 6*(c*f^2*g - 3*a*g^3)*sqrt(c*g)*weierstrassZeta(4/3*(c*f^2 - 3*a*g^2)/(c*g^
2), -8/27*(c*f^3 + 9*a*f*g^2)/(c*g^3), weierstrassPInverse(4/3*(c*f^2 - 3*a*g^2)/(c*g^2), -8/27*(c*f^3 + 9*a*f
*g^2)/(c*g^3), 1/3*(3*g*x + f)/g)) + 3*(3*c*g^3*x + c*f*g^2)*sqrt(c*x^2 + a)*sqrt(g*x + f))/(c*g^3)

Sympy [F]

\[ \int \sqrt {f+g x} \sqrt {a+c x^2} \, dx=\int \sqrt {a + c x^{2}} \sqrt {f + g x}\, dx \]

[In]

integrate((g*x+f)**(1/2)*(c*x**2+a)**(1/2),x)

[Out]

Integral(sqrt(a + c*x**2)*sqrt(f + g*x), x)

Maxima [F]

\[ \int \sqrt {f+g x} \sqrt {a+c x^2} \, dx=\int { \sqrt {c x^{2} + a} \sqrt {g x + f} \,d x } \]

[In]

integrate((g*x+f)^(1/2)*(c*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^2 + a)*sqrt(g*x + f), x)

Giac [F]

\[ \int \sqrt {f+g x} \sqrt {a+c x^2} \, dx=\int { \sqrt {c x^{2} + a} \sqrt {g x + f} \,d x } \]

[In]

integrate((g*x+f)^(1/2)*(c*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(c*x^2 + a)*sqrt(g*x + f), x)

Mupad [F(-1)]

Timed out. \[ \int \sqrt {f+g x} \sqrt {a+c x^2} \, dx=\int \sqrt {f+g\,x}\,\sqrt {c\,x^2+a} \,d x \]

[In]

int((f + g*x)^(1/2)*(a + c*x^2)^(1/2),x)

[Out]

int((f + g*x)^(1/2)*(a + c*x^2)^(1/2), x)